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When the size of a letter stimulus is near the visual acuity limit of a human subject, details of the stimulus become
unavailable due to ocular optical and neural filtering. In this study we tested the hypothesis that letter recognition near the
acuity limit is dependent on more global features, which could be parsimoniously described by a few easy-to-visualize and
perceptually meaningful low-order geometric moments (i.e., the ink area, variance, skewness, and kurtosis). We
constructed confusion matrices from a large set of data (approximately 110,000 trials) for recognition of English letters
and Chinese characters of various spatial complexities near their acuity limits. We found that a major portion of letter
confusions reported by human subjects could be accounted for by a geometric moment model, in which letter confusions
were quantified in a space defined by low-order geometric moments. This geometric moment model is universally
applicable to recognition of visual patterns of various complexities near their acuity limits.
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Introduction

Visual acuity, often defined as the minimal angle of
resolution, is a most important visual function. While the
primary visual acuity optotype is Landolt C (International
Organization for Standardization (ISO), 1986; National
Academy of Science National Research Council (NAS-
NRC), 1980), visual acuity is measured almost exclusively
with letters in literary adults. In the US, the most popular
visual acuity assessment is the ETDRS visual acuity chart
(Ferris, Kassoff, Bresnick, & Bailey, 1982), which is made
of 10 uppercase English letters of a specific typeface
(Sloan letters). Subjects have to read these letters of
progressively smaller sizes until no reliable recognition is
possible. Therefore, visual acuity assessment is a pattern
recognition process under a condition where visual
information is severely degraded by ocular optics. How
does a human subject recognize these letters?
In vision science, studies of letter recognition have

focused on spatial frequency channels. Recent studies of
contrast thresholds for recognizing spatially filtered and/or

noise masked large letter stimuli indicated that a narrow
band (1–2 octaves) centered at a relatively low fre-
quency (1–2 cycles/letter) is critical for letter recognition
(Ginsburg, 1977; Parish & Sperling, 1991; Solomon &
Pelli, 1994). Bondarko and Danilova (1997) calculated the
Fourier spectra of Landolt C and Snellen E, and concluded
that the primary information that could indicate the
orientations of these optotypes at the resolution limit also
resides in a narrow band centered at 1.4–1.7 cycles/letter.
The low frequency channels identified in these studies
cannot transmit the visual information of fine details of the
stimulus, and thus suggest an important role of global
characteristics in letter recognition.
The identification of the critical band is a big step

forward in our understanding of letter recognition near the
acuity limit, but it falls short of explaining how informa-
tion within the critical band is used to differentiate
members of the stimulus set. For example, Bondarko and
Danilova (1997) showed that spatial frequency amplitudes
could be used to determine whether the gap of a Landolt C
was in the horizontal direction, but amplitudes could not
determine whether the gap was to the left or to the right.
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Although phase information of Fourier components is in
theory capable of differentiating mirror images, there is
little empirical data or theoretical speculations on how
human subjects utilize phase information in this situation.
As a working model, spatial template matching in

various forms has been used to explain pattern recognition
(Chung, Legge, & Tjan, 2002; Gold, Bennett, & Sekuler,
1999; Tjan, Braje, Legge, & Kersten, 1995). While such
models have been powerful tools in testing hypotheses
about visual channels, the notion that a set of fixed spatial
templates exist somewhere in the visual system, ready to
be matched with visual inputs, may not explain why
human subjects can effortlessly recognize patterns they
have never encountered, for example, a new font face.
Cognitive science has a tradition of characterizing letter

stimuli as collections of features and explaining human
letter recognition as a process of matching feature sets
extracted from stimuli with those stored in memory
(Neisser, 1967). A recent study argued that human letter
recognition has to be performed by features, because a
holistic letter channel or template matching would have
resulted in much higher efficiency than observed (Pelli,
Burns, Farell, & Moore-Page, 2006). At the basis of any
feature analysis model is the set of perceivable attributes
of letters that are crucial to the recognition task at hand.
Feature sets of existing models for recognition of letters or
letter-like stimuli consist mainly of natural graphic
features, such as horizontal, vertical and oblique strokes,
dots, and gaps or openings (Geyer & DeWald, 1973;
Gibson, 1969; Laughery, 1969). While such models enjoy
different degrees of successes in explaining human errors
in recognizing briefly presented, large and high contrast
letters, their applications to recognition of letters whose
sizes are close to the acuity limit is questionable, because
individual strokes of these letters are severely distorted,
merge with each other, or simply vanish due to the low-
pass filtering of the ocular optics.
It is generally agreed that feature analysis models,

compared to template matching models, are more robust
and have better potential to generalize. This is because in
template matching, every physical pixel matters, regard-
less of its perceptual and cognitive significance. There-
fore, template matching is vulnerable to translation,
scaling, rotation, distortion, and noise. Feature analysis,
on the other hand, extracts generic features with percep-
tual and cognitive significances, and the matching is done
at the feature level. On the other hand, whether the
advantage of a feature analysis model can materialize
depends on the selection of a set of appropriate features.
We propose a feature analysis model that uses moments of
the stimulus image as its feature set.
Moments are commonly used in statistics and computer

science to specify a random distribution in a hierarchical
way. Lower order moments describe the global character-
istics of the distribution, whereas higher order moments
are associated with details. Unlike the feature sets of
previous letter recognition models, moments decompose

2-D images into generic features that do not depend on a
particular set of stimuli or an investigator’s personal
preference, and thus should be applicable to any letter/
character set. Moment “shape descriptors” have been used
as generic features for machine pattern recognition of
letters and characters of all types of fonts, including
handwritten ones (Mukundan & Ramakrishnan, 1998).
Among various moments developed in computer science
for image analysis, geometric moments (GMs) seem to be
most relevant to human pattern recognition because, as the
name indicated, they are directly related to geometric
features of random patterns. For an Nx-by-Ny pixel spatial
pattern f(x, y), the double-sequence quantities defined in
Equation 1 are the order (p + q) GMs of the pattern

Mp;q ¼
XNx

x¼1

XNy

y¼1

xpyqf ðx; yÞ; ð1Þ

and {Mp,q} (p, q = 0, 1, 2,I) are sufficient to uniquely
specify a finite spatial function f(x, y) (Hu, 1962). Mp,q is
the inner product of the geometric moment basis function
xpyq and the spatial pattern f(x, y).
The direct relationship between low-order GMs and the

geometric properties of 2-D images can be appreciated
from the basis functions, xpyq. In GM analysis, a 2-D
image is decomposed into basis functions xpyq, which are
luminance distributions confined within the boundary of
the image, and Mp,q are scalars that represent the weights
of the basis functions (the contributions of basis functions
to the 2-D image). Figure 1b shows basis functions of
some low-order GMs. Notice that low-order basis functions
are simple luminance distributions or features, and the GMs
are the weights or contributions of these features. Also
notice that the basis functions of low-order GMs are low
spatial frequency features in a sense that the luminance
changes in these features are gradual. Figure 1b also shows
a letter “E,” and the result of reconstruction using GMs up
to the 5th order. While this 5th-order reconstruction is
missing many details, it contains adequate information for
many purposes, for example, for identifying the opening
of tumbling E’s in an acuity test. When more moments are
used in the reconstruction, details such as the center bar of
the “E” will become evident. It is also worth mentioning
that while pure GMs, such as M0,q and Mp,0, are 1-D basis
functions, comparable to Gabors, mixed GMs, such as
Mp,q (p m 0 and q m 0), are true 2-D basis functions,
comparable to plaids.
We hypothesize that human observers use global

characteristics of stimulus images to recognize patterns
whose sizes are close to the acuity limit and that these
global characteristics can be adequately and parsimo-
niously described by low-order GMs. The low-order
GMs signify and retain pertinent information of x- and
y-distributions of ink on a rectangular domain that is too
small to engage receptive fields with a large variety of
envelopes. They are appropriate features to approximate
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global features of barely resolvable Sloan letters and
Chinese characters because these stimuli have a fixed
orientation and a predominantly orthogonal structure. For
example, the observation that a human observer can
determine the orientation of a Landolt C or a Snellen E
by judging which side of the stimulus has less ink could
be readily explained by the difference in the 3rd-order
GMs (skewness) of the ink distribution. The contribution
of height-to-width quotient to letter recognition demon-
strated by Bouma (1971) could be associated with the
ratio of 2nd-order GMs in y- and x-directions. Specif-
ically, we propose a feature analysis model for letter
recognition near the acuity limit, in which the feature set
consists of global characteristics of stimulus patterns
quantified by low-order GMs, and recognition is achieved
by comparing GM compositions of letters. Because
recognition confusions occur when crucial features are
shared, we used the model to analyze the patterns of letter
confusions obtained from identifying letters that were
slightly above the acuity limit. In order to demonstrate
that this model could be applied to a wide range of

over-learned patterns, we analyzed English letters and
6 groups of Chinese characters that spanned a wide range
of spatial complexities. We were able to demonstrate that
the Euclidean distances in a low-order GMs space could
explain a large portion of human errors made in
recognizing letters near the acuity limit.

Methods

Psychophysics and confusion matrix

Data were part of a large data set (approximately
110,000 trials) that was collected in a visual acuity study
of English letters and Chinese characters (Zhang, Zhang,
Xue, Liu, & Yu, 2007). Unlike the published visual acuity
study that focused on the relationship between viewing
conditions and correct responses, the current study
focused on response errors or confusions.

Figure 1. (a) Selected centralized GMs, mp,q, of 50 � 50 pixels black and white images. The white pixels are considered “ink.” Moments
Mp,q defined in Equation 1 are related to mp,q through a series of affine transforms (Equations 2–5). (b) A stimulus “E”, the basis functions
of selected GMs, and the result of reconstruction using GMs up to the 5th order. Basis functions x0y2, x0y3 and x0y4 have the same
shapes as x2y0, x3y0 and x4y0 but are aligned along the y-axis. The result of reconstruction is shown both in gray map and in 3-D
distribution.
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The test stimuli consisted of one group of Sloan letters
and six groups of Chinese characters (CC1–CC6), 10
letters or characters in each group (Figure 2). The Chinese
character groups differed by the number of strokes (2–4,
5–6, 8–9, 11–12, 13–15, and 16–18 strokes per character,
respectively). They were selected from the 500 most
frequently used Chinese characters according to an official
character frequency table and were pre-screened for
similarity in legibility based on the intermediate pair-wise
Euclidean distances of their bitmaps. Different stimulus
groups were tested separately. The observers’ task was to
identify the stimulus from a list of 10 letters or characters
of the tested group. Figure 2 lists the acuity sizes and
stroke frequency (Majaj, Pelli, Kurshan, & Palomares,
2002) for each stimulus group. Stimulus sizes for these
stimulus groups were set at 0.1 log unit above the acuity
sizes shown in Figure 2. More details regarding data
collection can be found in Zhang et al. (2007).
One confusion matrix (CM) was constructed for each

stimulus group based on six observers’ pooled responses.
Like most studies of human recognition errors (Geyer &
DeWald, 1973; Townsend, 1971), only data from stimulus
sizes that generated group average correct rates between
54% and 60% were used for CM construction. Since each
experiment involves 10 letters, the CM was a 10-by-10
square matrix. The (i, j) cell contained the probability of
the ith stimulus letter being reported as the jth letter, ci,j.
The diagonal line entries ci,i were probabilities of correct
responses, and the off-diagonal line entries (i m j) were
errors, or confusions. Because the ith column of a CM
contained all the responses to the ith stimulus, the sum of
the column was equal to 1.0.

A GM-based feature analysis model
Central geometric moments

GMs defined in Equation 1 are “raw” moments that are
sensitive to pattern location and size. It is helpful to
transform the variables x and y so that the moments are

location and size invariant (Alt, 1962). The coordinates of
the center of gravity of the pattern are

x� ¼
XNx

x¼1

XNy

y¼1

xf ðx; yÞ=L and

ð2Þ
y� ¼

XNx

x¼1

XNy

y¼1

yf ðx; yÞ=L;

where L =
PNx

x¼1

PNy
y¼1
f(x, y) is the mean luminance. The

variances of the pattern in x- and y-directions are defined
as

Ax ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
XNx

x¼1

XNy

y¼1

ðxj x
�Þ2f ðx; yÞ=L

vuut and

ð3Þ

Ay ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
XNx

x¼1

XNy

y¼1

ðyj y
�Þ2f ðx; yÞ=L;

vuut

and they are used to normalize the coordinates

x* ¼ ðxj x
�Þ=Ax and y* ¼ ðyj y

�Þ=Ay: ð4Þ

The new moments based on x* and y* were used in our
study:

mp;q ¼
XNx

x¼1

XNy

y¼1

x*
p

y*
q

f ðx*; y*Þ=L: ð5Þ

The following adjustments were made. The 0th-order
moments m0,0 defined in Equation 5 is equal to 1.0.
Because the mean luminance of the pattern might provide
important information for pattern recognition, we set m0,0

equal to L. The 1st-order moments, m1,0 and m0,1, are 0 for
all patterns because the coordinate was shifted to the

Figure 2. The seven groups of stimuli, their average acuity sizes, and average stroke frequencies. Acuity size was defined as the
character size that resulted in a 66.9% correct recognition.

Journal of Vision (2009) 9(1):26, 1–18 Liu et al. 4



centroid of the pattern. They were not used in the
following simulation because the task was to recognize a
single letter. Information about centroids of multiple
letters is important in tasks such as word recognition or
reading. The 2nd-order moments m2,0 and m0,2 defined in
Equation 5 are equal to 1.0. Because the width/height ratio
might be informative in letter recognition, we set m2,0 and
m0,2 to Ax and Ay defined in Equation 3. We subtracted 3
from the kurtosis in the x- and y-directions (m4,0 and m0,4)
defined in Equation 5 to comply with the common
practice that when the distribution along the x- or y-axis
was a Gaussian, the kurtosis was zero.
The centralized GMs of some simple geometric shapes

were shown in Figure 1a to illustrate that low-order GMs
were directly associated with perceivable global properties
of 2-D images. For binary images ( f(x, y) = 0 or 1) in
Figure 1a, the 0th-order GM is the number of ink pixels,
which can be perceived as the general lightness or
darkness of a letter. In Figure 1a, patterns with more
strokes have a larger m0,0 than those with fewer strokes
and appear darker if individual strokes cannot be
distinguished. Pure 2nd-order moments (moments that
are 0-order in one direction) m2,0 and m0,2 are dispersion
of ink distribution. For the vertical bar in Figure 1a
(height/width = 5/1), m2,0 G m0,2 (2.872 vs. 14.431). For
the horizontal bar, m2,0 9 m2,0 (14.431 vs. 2.872). In fact,
when only GMs up to the second order are considered, the
original image is completely equivalent to a constant
irradiance ellipse, whose size, orientation, aspect ratio,
and center are completely specified by the GMs (Teague,
1980). Pure 3rd-order moments m3,0 and m0,3 represent the
skewness of ink distributions on the x- and y-directions.
For the letter “E,” m3,0 has a positive value (0.18), but
m0,3 is zero. Perceptually, the letter appears darker on the
left side (skewed to the left), but appears symmetric in the
vertical direction. The distribution of letter “L” is heavily
skewed to the left in the horizontal direction and to the
bottom in the vertical direction (m3,0 = 0.85, m0,3 =
j0.85). Notice that the skewness is both directional
specific (m2,0 vs. m0,2) and positional specific (positive
vs. negative). Pure 4th-order moments m4,0 and m0,4

specify whether ink distributions on the x- and y-directions
are more peaked or flat-topped than a Gaussian. In letter
“H”, the distribution along x-axis is the lowest in the
middle, due to the two vertical strokes, and thus m4,0 has a
large negative number (j1.72). The distribution of letter
“T”, on the other hand, has a strong peak in the middle,
and m4,0 has a positive number (0.046). Mixed moments
indicate the clustering of ink pixels around oblique axes.
For example, m2,2 is large for letter “X”, but small for
Chinese character g (1.60 vs. 0.81).

Feature analysis models using GMs as feature sets

This model used GMs extracted from stimulus bitmaps
as features. To simplify the notation, we used one index to
denote moments involved in the model as 21, 22, I, 2n.

For example, if a model used ink area, x- and y-direction
skewness and x- and y-direction kurtosis, then these
moments were denoted as 21, 22, 23, 24, and 25. In a
model involving n moments, each stimulus was repre-
sented by a vector {21, 22, I, 2n}, in an n-dimensional
moment space. The difference between the ith and jth
stimuli, di,j, was measured by the distance between these
stimuli in the n-dimensional moment space. To reflect
different contributions of moments to the recognition of a
set of stimuli, a weighting, wk, was given to each moment
dimension:

di; j ¼
Xn
k¼1

wk 2ik j 2jk

� �h i2
: ð6Þ

This weighted Euclidean distance (Getty, Swets, Swets, &
Green, 1979; Mukundan & Ramakrishnan, 1998) was a
pure physical measure of pair-wise difference between
stimuli. For a letter recognition experiment that involves k
letters, {di,j} forms a k-by-k symmetric matrix with zeros
on the diagonal. To simulate human recognition perfor-
mance, di,j needed to be converted to a measure of
perceptual similarity. There are both empirical evidence
and theoretical justification (Shepard, 1987) that the
conversion should be monotonic and should take an
exponential shape:

si; j ¼ ejCdi; j ðC 9 0Þ: ð7Þ

The quantity si,j was called “measure of stimulus
generalization” (Shepard, 1987) or “similarity scale”
(Luce, 1963b) and was used in several previous studies
of human letter recognition (Getty et al., 1979; Keren &
Baggen, 1981; Loomis, 1990). For a set of k letters, {si,j}
was a k-by-k similarity symmetric matrix. Because di,i = 0,
similarity between a stimulus and itself, si,i = 1.0, which
sets the scale for similarity. The fact that all diagonal
entries of similarity matrix {si,j} equal 1.0 simply
indicates that all stimuli had the same degree of similarity
to themselves. The free parameter in Equation 7, C,
determined how fast similarity fell from perfection.
Intuitively, the probability of confusion between the ith
and jth letter should be proportional to perceptual
similarity si,j, but si,j was not the empirical probability of
the ith letter being reported as the jth letter, because the
column sum of matrix {si,j} was not 1.0. A similarity
matrix {si,j} was converted into a theoretical CM through
a column-wise normalization (Luce, 1963b):

ci; j ¼ si; j=
Xk
j¼1

si; j: ð8Þ

The k-by-k CM {ci,j} differed from {si,j} in several
ways. First, each column of {ci,j} summed up to 1.0,
indicating that it summarized all responses to a stimulus
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letter. Second, the diagonal line entries were no longer
equal, due to the column-wise scaling. They were now the
rates of correct recognition. Finally, {ci,j} was no longer
symmetric, again due to the scaling of Equation 8. This
asymmetry, however, was not caused by response bias
human subjects produced in letter recognition experi-
ments, as we will discuss later. The outcome of a GM
model was thus a theoretic CM {ci,j}. For a model with n

GMs, there were n free parameters, including the C for the
similarity matrix and the n j 1 independent weightings of
the moment space.

Implementation of models
To simulate letter recognition close to acuity limits, we

filtered the letters with a published contrast sensitivity

Models
Key features/number
of free parameters Simulation details

Correlation with empirical

Sloan CC1 CC2 CC3 CC4 CC5 CC6

CHOICE Similarity matrix and
response bias vector.
54 parameters

Interpreting empirical
CM. Not involving
stimulus.

0.921 0.949 0.960 0.958 0.918 0.954 0.910

GM13/LM13 All GMs or LMs up to
4th order, excluding
m1,0 and m0,1

GM No Bias Correction 0.768 0.896 0.642 0.779 0.628 0.747 0.617

14 parameters GM Bias Correction 0.829 0.895 0.685 0.868 0.684 0.789 0.633
LM No Bias Correction 0.792 0.895 0.665 0.800 0.611 0.799 0.701

GM9/LM9 m0,0, m2,0, m1,1, m0,2, m3,0,
m0,3, m4,0, m2,2, m0,4

GM No Bias Correction 0.698 0.861 0.547 0.723 0.477 0.672 0.517

10 parameters GM Bias Correction 0.713 0.858 0.578 0.793 0.554 0.665 0.528
LM No Bias Correction 0.680 0.779 0.514 0.739 0.408 0.711 0.528

GM7/LM7 m0,0, m2,0, m0,2, m3,0, m0,3,
m4,0, m0,4

GM No Bias Correction 0.694 0.770 0.392 0.708 0.366 0.673 0.392

8 parameters GM Bias Correction 0.706 0.768 0.483 0.765 0.410 0.671 0.395
LM No Bias Correction 0.680 0.779 0.317 0.739 0.408 0.711 0.528

GM51/LM51 m0,0, m2,0, m0,2, m3,0, m0,3 GM No Bias Correction 0.690 0.698 0.327 0.558 0.212 0.673 0.335
6 parameters GM Bias Correction 0.699 0.697 0.376 0.642 0.241 0.671 0.339

LM No Bias Correction 0.670 0.697 0.374 0.609 0.175 0.711 0.402
GM52/LM52 m0,0, m2,0, m0,2, m4,0, m0,4 GM No Bias Correction 0.578 0.676 0.290 0.603 0.247 0.568 0.280

6 parameters GM Bias Correction 0.565 0.668 0.188 0.687 0.247 0.571 0.277
LM No Bias Correction 0.594 0.760 0.519 0.687 0.373 0.571 0.463

GM53/LM53 m0,0, m3,0, m0,3, m4,0, m0,4 GM No Bias Correction 0.692 0.746 0.392 0.708 0.366 0.576 0.396
6 parameters GM Bias Correction 0.703 0.741 0.483 0.765 0.410 0.568 0.396

LM No Bias Correction 0.680 0.734 0.519 0.686 0.370 0.568 0.402
GM31/LM31 m0,0, m2,0, m0,2 GM No Bias Correction 0.577 0.556 0.142 0.427 0.160 0.578 0.109

4 parameters GM Bias Correction 0.565 0.508 0.111 0.489 0.221 0.574 0.084
LM No Bias Correction 0.595 0.563 0.147 0.431 0.119 0.596 0.321

GM32/LM32 m0,0, m3,0, m0,3 GM No Bias Correction 0.395 0.461 0.278 0.446 0.118 0.575 0.225
4 parameters GM Bias Correction 0.414 0.472 0.319 0.489 0.142 0.578 0.254

LM No Bias Correction 0.351 0.423 0.238 0.492 0.068 0.592 0.200
GM33/LM33 m0,0, m4,0, m0,4 GM No Bias Correction 0.600 0.633 0.290 0.603 0.292 0.531 0.172

4 parameters GM Bias Correction 0.571 0.614 0.283 0.687 0.187 0.534 0.089
LM No Bias Correction 0.594 0.552 0.374 0.609 0.384 0.509 0.220

GM1/LM1 m0,0 GM No Bias Correction 0.476 0.311 0.213 0.354 0.037 0.595 0.072
2 parameters GM Bias Correction 0.319 0.178 0.136 0.347 j0.197 0.575 0.040

LM No Bias Correction 0.476 0.311 0.213 0.354 0.037 0.595 0.072
CSFTM Template matching No Bias Correction 0.729 0.649 0.408 0.447 0.155 0.640 0.292

1 parameter Bias Correction 0.761 0.664 0.453 0.549 0.205 0.656 0.337
RANDOM Random off-diagonal

line elements
Average of 500 CMs 0.202 0.136 0.154 0.195 0.299 0.151 0.120

Table 1. Model summary. Key features of the models evaluated in this study are summarized. Correlation coefficients between model
generated and empirical CMs are listed for each stimulus group. The three correlation coefficients in a cell were obtained from GM model
without bias correction, GM model with bias correction, and LM (Legendre moments) without bias correction, respectively.
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function (CSF) (see Appendix A for details). A total of 10
GM models were constructed using GMs of 4th order and
below. Key features of these models were shown in Table 1.
Zero-order GM m0,0 was used in all GM models, and
the 1st-order GMs, m1,0 and m0,1, were never used. This
is because when the center of the coordinate was moved to
the center of gravity of stimulus image (Equation 4), m1,0

and m0,1 became 0 for all stimuli. Model GM1(lu) used
m0,0 (lu) only. Models GM3(lu,va), GM3(lu,sk), and GM3
(lu,ku) used m0,0 (lu) and one pair of pure GMs, m2,0 and
m0,2 (va), m3,0 and m0,3 (sk), and m4,0 and m0,4 (ku).
Models GM3(lu,va,sk), GM3(lu,va,ku), and GM3(lu,sk,
ku) used m0,0 and two pairs of pure GMs. We did not use
the 2nd order GM m1,1 to construct GM3 and GM5
models because it only had a non-zero value when there
was a gross difference in ink distribution between opposite
corners of a letter, as in a letter “L” (Figure 1a). Because
most of the stimulus characters shown in Figure 2 filled
the corners of a square area rather symmetrically, values
of m1,1 are very close to zero. The average values of m2,0

and m0,2 of the 70 characters were 26.2 T 0.51 and 25.7 T
0.50, respectively, but the average of the absolute values
of m1,1 was only 0.023 T 0.003. GM7 had all pure GMs up
to the 4th order. GM9 added m1,1 and m2,2 to GM7. GM13
used all GMs up to the 4th order, excluding m1,0 and m0,1.
GMs higher than the 4th order were not discussed because
we found adding 5th-order GMs resulted in little change
in fitting empirical CMs.
To quantitatively demonstrate the effectiveness of GM

models in predicting human performance, we also
implemented three other models: a template-matching
model (CSFTM) derived from a CSF ideal-observer model
(Chung et al., 2002), a parameter-heavy choice model
(CHOICE; Townsend, 1971), and an average of 500 CMs
that had the empirical CMs’ diagonal line entries but
random off-diagonal line entries (RANDOM). Details of
these models were presented in Appendix A. Pearson
correlation coefficients were used to quantify the agree-
ment between vectorized empirical and theoretical CMs.

Results

Using GM models to predict human
confusions

The seven empirical CMs are shown in Figure 3. It was
evident that empirical confusions we observed were not
random events. This was reflected in the large differences
in the values of the off-diagonal line elements (confu-
sions). Some letter pairs seldom got confused (0.00%) and
some letter pairs got confused quite frequently (10È20%,
pink and blue numbers in Figure 3). As shown in CMSloan,
the well-known confusions in English letters, such as “C”

vs. “O,” “D” vs. “O,” and “N” vs. “H”, were reproduced.
These prominent confusions were most likely to be
associated with perceptual similarities between characters,
and thus could not be the result of random guessing. We
constructed several versions of “random confusion”
matrices, including Townsend’s (1971) “equiprobable”
(every cell had the same value), an “equal legibility” (all
diagonal line elements contained the mean legibility of the
empirical CM, and all off-diagonal line elements con-
tained mean confusion), and a CM that retained the
empirical relative legibility while all incorrect reports
were evenly distributed in the nine off-diagonal cells of a
column. #2-tests between the empirical CMs and all these
random CMs were conducted, and the results showed that
the probability that any of the empirical CMs were
produced by random reporting was G0.0005.
Correlations between whole empirical and theoretical

CMs were high. The average correlation across the 7
stimulus groups was 0.970 T 0.006 for the GM model
using 13 GMs. In comparison, for those CMs that had
empirical CMs’ diagonal lines but random off-diagonal
line entries, the mean whole matrix correlation was
0.955 T 0.012. Evidently whole CM correlation provided
little information about how well models could predict
confusions made by human subjects. Therefore, in this
section we ignore the diagonal information and focus on
results obtained from fitting the 90 confusion entries.
Figure 4a shows empirical–theoretical correlation coef-

ficients produced by GM13, GM9, GM7, the average of
GM5(lu,va,sk), GM5(lu,va,ku) and GM5(lu,sk,ku), the
average of GM3(lu,va), GM3(lu,sk) and GM3(lu,ku), and
GM1(lu) (colored symbols). Also shown are correlations
produced by the CHOICE model (black squares) and the
RANDOM model (black diamonds). These correlation
coefficients are shown as the first number in each cell in
Table 1. The CHOICE model, which produced a mean
correlation of 0.938 with empirical CMs, served as
practical upper boundaries of goodness of fit. The CMs
without consistent confusion patterns (RANDOM model)
produced a mean correlation of 0.180 with empirical CMs
and served as the lower boundaries for goodness of fit.
Figure 4b shows scatter plots of the 90 confusions of the
CC1 empirical CM against the corresponding 90 theoret-
ical confusions produced by the CHOICE, GM13, GM7,
and GM1(lu) models, along with regression lines through
the data points. If empirical and theoretical confusions
matched perfectly, data points would all fall on a line with
a slope of 1.0. Because most of the confusions in each CM
had low probabilities except for a few prominent
confusions, as shown in Figure 3, the data were scaled
and log transformed before regression analyses were
performed and plots were made. Regression analyses
showed that CHOICE, GM13, and GM7 models all had
slopes close to 1.0 (0.898, 0.820, and 0.936), while the
GM1(lu) model had a very shallow slope (0.137). In the
plots, the data points were scattered widely for the GM1
(lu) model but clustered more tightly around the
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regression line for GM7, GM13, and CHOICE models.
This was quantified by the adjusted R2 of the linear
regression model, which had values of 0.163, 0.484,
0.636, and 0.896 for GM1(lu), GM7, GM13, and CHOICE
models, respectively.
It is obvious that the empirical–theoretical correlation

increased with the number of GMs used in a GM model.
However, just by having the mean luminance information
of the stimulus (m0,0), the correlations between GM1(lu)
model CMs and empirical CMs were higher than the

lower boundary defined by RANDOM CM’s in 5 out of 7
stimulus groups. For example, the theoretical confusions
obtained using the mean luminance values of Sloan letters
and CC5 characters correlated with corresponding empiri-
cal confusions at 0.476 and 0.595, respectively, suggesting
that even within these groups of stimuli of relatively
uniform spatial complexity, letters of similar mean
luminance were more likely to get confused when their
sizes were close to acuity limits. With 7 GMs, correlation
coefficients were 0.362–0.770. When all 13 GMs up to

Figure 3. Empirical CMs obtained using Sloan, and CC1–CC6 stimulus groups. Off-diagonal line entries Q0.1 are highlighted to indicate
prominent confusions.
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4th order (excluding m1,0 and m0,1) were used, the
correlation coefficients were at least 0.617. For Chinese
characters in CC1, the correlation was about 0.896,
approaching the level of performance of the 54-parameter
CHOICE model.
Improvement of model performance with increasing

number of GMs was more significant with lower order
pure GMs. After all pure GMs were used (GM7), adding
more GMs caused progressively less performance
improvement. As shown in Figure 4c, the improvement
saturated at about 9 to 11 GMs. Adding all six 5th-order
GMs resulted in less than 0.3% of change in Sloan, CC1,
CC2, and CC3 groups, and in 2%, 3%, and 5% improve-
ment in CC4, CC5, and CC6. Therefore, for letter
recognition near the acuity limit, pure GMs up to the 4th
order explained a large portion of confusions made by
human subjects, and adding higher order GMs did not
seem to provide additional useful information.

Asymmetry of empirical CMs and effect of
response biases

The empirical CMs we obtained were clearly asym-
metric. For example, in Sloan letters, “D” was reported as
“O” 23% of the time, while “O” was reported as “D” 13%
of the time. Asymmetry can be appreciated by observing
the row sums of CMs. The sum of the entries of a row in a
CM indicates whether the report of a letter is more or less
than its share. If subjects responded to all stimulus letters
without bias, the row sums should all be close to 1.0. On

the other hand, if subjects have clear preference to report
some letters, the row sums of these letters will be
significantly greater than 1.0, and the row sums of other
letters will become less than 1.0. In our Sloan letter CM,
the row sums were 0.93, 0.88, 1.21, 0.97, 1.05, 0.83, 0.81,
0.93, 1.18, and 1.21. The standard deviation of the 10 row
sums was 0.152. The subjects had a clear tendency to
make more reports of “H” and “Z” (row sums 1.21) and
not enough reports of “R” (row sum 0.81). In comparison,
subjects made more uniform reports of the 10 characters
in CC1. The row sums were 0.91, 0.81, 1.05, 1.05, 1.10,
1.05, 1.02, 1.02, 1.06, and 0.92 (standard deviation =
0.090).
Many researchers believe that perceptual similarity and

confusion between two stimuli is determined only by
stimulus properties and thus is inherently symmetric. Bias
occurs because subjects have to make reports, and reports
are influenced by subjects’ preference to stimuli. This
view was clearly demonstrated in the CHOICE model,
where a CM was a product of a symmetric similarity
matrix and a bias vector (Equation A2). The CHOICE
model provided explicit estimation of the bias {"j} vector
(Equation A2) for each empirical CM. Because GM
models produced symmetric similarity matrices, we could
incorporate bias vectors estimated by the CHOICE model
into these models. Specifically, a stimulus-driven similar-
ity matrix {si,j}, obtained from a GM model was
combined with the bias vector {"j} obtained from the
CHOICE model to produce a biased theoretical CM. The
optimization procedure was the same, because it was
related only to the stimulus.

Figure 4. Fitting results. (a) Correlation coefficients between empirical and theoretical confusion entries of CMs. Theoretical CMs were
produced by GM13, GM9, GM7, the average of GM5(lu,va,sk), GM5(lu,va,ku) and GM5(lu,sk,ku), the average of GM3(lu,va), GM3(lu,sk)
and GM3(lu,ku), GM1(lu) and CSFTM models. Black squares and black diamonds are results from the CHOICE model and the RANDOM
model, respectively. (b) Log transformed scatter plots of empirical confusions vs. theoretical confusions. Empirical confusions were from
the CC1 stimulus group. Theoretical confusions were produced by the CHOICE, GM13, GM7, and GM1(lu) models. Best-fitting lines
through the data points are drawn. The slopes of linear regression lines are also presented. (c) The relationship between the number of
GMs used in GM models and model performance. The green and blue bands show the ranges of correlations obtained from the CHOICE
and the RANDOM models.
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Without bias adjustments, the theoretical CMs were
rather symmetric, with standard deviations of row sums
around 0.04–0.08. The correlations between empirical and
theoretical row sums were low, from j0.367 to 0.017.
Theoretical CMs with bias adjustments had row sums
similar to those of the corresponding empirical CMs, and
the correlations were high, from 0.717 to 0.907
( p G 0.005), indicating a faithful restoration of the bias
observed in empirical CMs. Correlation coefficients
between empirical CMs and biased theoretical CMs were
shown as the second number in each cell in Table 1. It
appeared that biased theoretical CMs generally correlated
with empirical CMs better than unbiased, but the improve-
ment was moderate at best.

Relative legibility

No model based on Euclidean perceptual distances,
including the GM models and template matching models,
can predict relative legibility directly, because the diago-
nal line entries of the model similarity matrix (Equation 7)
are all 1.0. However, a model CM defined in Equation 8
did produce diagonal line entries of different values, due
to the column-wise normalization. This was because each
diagonal line entry was one minus the sum the nine off-
diagonal line entries in the same column.
When the whole CM was optimized, the correlation

between diagonal line entries of empirical and theoretical

CMs was higher than when only confusions were
optimized. This was because whole CM optimization
was mainly optimizing diagonal line entries. Figure 5
shows correlation coefficients between diagonal line
entries of the 7 empirical CMs and theoretical CMs
produced by GM13, GM7, GM1(lu), and CHOICE
models. The CHOICE model produced the best correla-
tion, 0.984 on average. The GM models each had two
results, that from a whole CM fitting (solid symbol and
solid line) and that from a confusion-only fitting (open
symbol and dashed line). For Sloan letters, the empirical
relative legibility was ROSKDCNHZV. The relative
legibility produced by the whole CM fitting GM13 model
was OSCRNDKHZV, which correlated with the empirical
relative legibility at 0.912. GM models agreed with human
subjects in that “R,” “O,” and “S” were more difficult to
recognize and “H,” “Z,” and “V” were easier.

Discussion

GM as visual features

This study, as far as we know, is the first attempt to use
low-order geometric moments as perceptual features to
explain human recognition of characters near the acuity
limit. Our study identified one set of perceptual features
that might be used in recognizing these small patterns.
Our study also showed how these features might be
described, and how they might be used to choose one out
of a set of 10 stimuli. GMs provide a systematic way to
decompose 2-D patterns into visually perceivable features.
A GM-based feature analysis model is thus universally
applicable to any stimulus set.
Bouma (1971) measured confusions between 26 lower

case letters near the acuity limit. While he did not propose
an explicit model to fit his empirical CM, he did analyze
perceptual distances between lower case letters and
identified a set of 16 properties of lower case letters that
served as cues to differentiate these letters through
perceptual grouping. Many of these properties, or percep-
tual features, are global and could be related to lower
order GMs. For example, the three “height-to-width
quotients,” H/W G 1.16, H/W 9 1.16, and H/W 9 1.22,
could be differentiated by m2,0/m0,2. The left, upper, right,
and lower gaps could be perceived as skews of pattern
luminance in different positions and thus can be differ-
entiated by relative values and/or signs of m0,3 and m3,0.
The rectangular envelope and circular envelope can be
differentiated by the 4th-order GM m2,2, which has a
significantly higher value for a square than for a circle
(1.0 vs. 0.664, regardless sizes). The fact that many
perceptually important features identified by Bouma can
be described by low-order GMs suggests that GMs
provide a theoretical description of the basic features

Figure 5. Correlation coefficients between diagonal line entries of
empirical and theoretical CMs. Theoretical CMs were produced by
GM13, GM7, GM1(lu), and CSFTM models. Solid symbols
represent results obtained when the whole CMs were used in
data fitting (CSFTM_All and CSFTM_Off were almost identical).
Open symbols represent results of fitting only the confusions.
Black circles are results from the CHOICE model.
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human subjects use to recognize letters near the acuity
limit.
One may expect that some kind of tendency in wk

values (Equation 6) may exist that reflect the intrinsic
property of moment analysis, for example, the weights
should be lower for higher order moments because they
contribute less in low-pass-filtered stimuli. Our results,
however, failed to reveal any consistent trend for wk

values. Only in CC5, wk values decreased with GM order.
In CC1, CC4, and CC6, wk values first increased from 0th
to 3rd order of GM, and then dropped at 4th-order GM. In
Sloan and CC2, wk values were the lowest at 2nd-order
GM, went up at 3rd order, and then dropped at 4th order.
In CC3, wk values increased steadily from 2nd to
4th order. Our current understanding is that wk values
are very specific to the characteristics of the stimulus
group. For example, if characters in a stimulus group all
have similar ink pixels, then the 0th-order GM would
contribute very little to differentiating characters in the
group, and the weight for m00 will be small. This
happened in CC6 where the variation of total number of
pixels was reduced because a large number of strokes
were packed in the same area. As a consequence, m00 did
not contribute much to differentiating CC6 characters, and
the weight for the 0th-order GM is very small. We have
not yet found a satisfying way to explain the observed
relationship between model weights and GM order.

Models with different number of parameters

The correlations produced by various models presented
in the Results section only showed one aspect of model
fitting. If we wanted to judge relative merits of models,
the numbers of free parameters had to be considered,
because models with more parameters tend to provide
better fit to a set of data. There may not be one simple
answer to this question, because the answer may depend
on one’s view of a balance between the models’ abilities
to fit data and its complexity, and there are more than one
view on this matter. One method that determines a
model’s goodness of fit while taking its complexity into
consideration is the Akaike’s Information Criterion (AIC)
(Akaike, 1974). The AIC is defined as AIC = N j ln (SS/N)
+ 2K, where N is the number of data points to be fitted
(90, if all confusions of a 10 � 10 CM are considered), SS
is the residual sum of squares, and K is the number of free
parameters. If A is a simpler model and B is a more
complex one, then $AIC = AICB j AICA can help to
determine the model that explains the data well with fewer
free parameters. An evidence ratio, defined as 1/ej0.5$AIC,
is usually used to quantify how much more correct one
model compared to the other. An alternative criterion,
Bayesian Information Criterion (BIC), defined as BIC =
Nln(SS/N) + Kln(N), has a stiffer penalty for parameter
usage (Schwarz, 1978). These criteria obviously will pass
different judgments on relative merits of models with

different number of parameters. We used both AIC and
BIC to give a more comprehensive view. Another
advantage of AIC and BIC analyses is that they allow
ranking multiple models according to their merits with-
out having to adjust statistical criteria (!) like in multiple
hypothesis tests.
Because AIC and BIC are related to a specific model

fitting results of the specific experiment (N and K), it is
difficult to judge whether an individual AIC or BIC value
represents a good fit. For example, when the GM13 model
was used to fit CC1 empirical CM, the BIC was
j600.119. It is difficult to say how good this fitting is,
because there is not a universal best fitting criterion for
BIC, like the 1.0 in correlation analysis. Only when two or
more models are compared, does the importance of AIC
and BIC become obvious. They help to select the more
parsimonious, and thus the better model.

Template matching vs. Feature analysis

Template matching models in both spatial and fre-
quency domains and with raw stimulus and filtered images
have been built to account for English letter confusions
(Blommaert, 1988; Gervais, Harvey, & Roberts, 1984;
Loomis, 1990). The correlations between these model
CMs and empirical CMs ranged from 0.24 and 0.70.
Because some correlations were calculated using whole
CMs, the goodness of fit of confusions could be much
lower. To make direct comparison between the GM model
and template matching models for letter confusions near
the acuity limit, we derived a template matching
(CSFTM) model from Chung’s CSF ideal-observer model
(Chung et al., 2002; see Appendix A). The performance of
this model in predicting human letter confusions was
shown in Figure 4a (black bow ties) and in Table 1. The
correlations produced by the CSFTM model fitting was
lower than the GM13 model in all stimulus groups, was
comparable with that of GM9 in two stimulus groups, and
was at the level of GM3 or GM5 in the remaining 4
stimulus groups. When used to predict human relative
legibilities (Figure 5, purple circles), the CSFTM model
relative legibilities correlated with empirical ones at 0.773
and 0.776 for whole matrix and confusion only optimiza-
tions. The GM13 model, when optimized for the whole
CM, had higher diagonal line correlations than the
CSFTM model at all stimulus groups, and when optimized
for confusions only, had similar correlations as the
CSFTM model at 4 stimulus groups and better correla-
tions than the CSFTM model at the remaining 3 groups.
The correlation of GM7 model fitting was lower than the
CSFTM model at simpler stimulus groups (Sloan letter
and CC1), and was equal or higher than the CSFTM
model at more complex stimulus groups.
Using AIC, we found evidence that was overwhelm-

ingly in favor of the 1-parameter CSFTM model than the
13-parameter GM13 model for the Sloan letters (AIC for
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GM13 and CSFTM were j590.061 and j607.049,
respectively, and the evidence ratio was 4886.27). How-
ever, the evidence was overwhelmingly in favor of the
GM13 model in 5 of the 6 CC stimulus groups (evidence
ratios 9 2280) with the exception of CC5 where the GM13
was still in favor, but the evidence was not very
persuasive (2.05). Comparisons between CSFTM and
GM9 produced the similar results. When the number of
moments in GM models was further reduced, the CSFTM
model was favored in more and more stimulus groups. It
is also interesting to compare the CSFTM model with the
54-parameter CHOICE model. There was only weak
evidence that CSFTM is better than CHOICE in Sloan
letters (evidence ratio 3.84), but the evidence in favor of
the CHOICE model was overwhelming in all CC stimulus
groups (evidence ratio 9 2 � 1011).
Using BIC, we found overwhelming evidence in favor

of the CSFTM model over the GM13 model for the
Sloan letters, CC2, CC5, and CC6 groups, and over-
whelming evidence in favor of the GM13 model for
CC1, CC3, and CC4 groups. When the CSFTM and
CHOICE models were compared using BIC, the evi-
dence was overwhelmingly in favor of the CSF model
for all stimulus groups.
Therefore, under some situations, like the Sloan letters,

the 1-parameter CSFTM model was always superior to
other parameter-rich models. In other situations, such as
CC1 and CC3, GM13 and GM9 were always superior to
the CSFTM models, indicating that the improvement of
model performance had outweighed the cost of using
more parameters. In other situations, the relative merits of
models depended on the criteria used.
The CSFTM model did not seem to be sensitive to the

exact shape of the CSF. We simulated the CSFTM model
using three front-end filters (see below). There were no
significant differences between correlation coefficients
produced by different CSFs among the 7 stimulus groups
(repeated measures ANOVA, F2,12 = 1.179, p = 0.341).

The effect of the front-end filter

In the study, we used an empirical CSF as a front-end
filter. GM features were extracted from filtered characters.
To assess the influence of the front-end filter on the
performance of GM models, we repeated the analyses
using two additional filters, an empirical CSF obtained
from one of our subjects (ZJY CSF, blue squares and curve
in Figure A1a), and the 3.8-mm pupil point spread
function of Campbell and Gubisch’s (1966; CG PSF).
The ZJY CSF had a slightly higher peak frequency than
the CLT CSF, and a lower cut-off frequency. The CG PSF
was fitted with the sum of two Gaussians (Geisler, 1984)
and then convolved with bitmaps of the stimuli. The
corresponding correlation coefficients produced by the
CLT CSF, ZJY CSF, and CG PSF front-end filters agreed
with each other very well. An ANOVA showed that

among the 70 sets of model simulations (7 groups � 10
GM models) there were no significant filter effect (F2,120 =
0.182, p = 0.893) or filter*model interaction (F18,120 =
0.419, p = 0.982). These results indicated that the GM
models are not very sensitive to the details of the front-
end filtering. This should not be surprising, because the
GM models used only the global features of the
characters, which were attenuated to some degree but
not eliminated or distorted by these linear filters. The
insensitivity of GM model performance to the type of the
front-end filter may also be explained by the feature
matching process used by the model. We used the feature
list extracted from a filtered stimulus character to match a
set of stored feature lists that were extracted from
identically filtered characters. This approach was appro-
priate in our study, where subjects had done thousands of
trials of recognizing characters close to acuity thresholds.
It would be interesting to investigate the effect of front-
end filters on GM models when the stimulus feature set is
extracted from a filtered character while the store feature
set is extracted from unfiltered characters. This situation
may occur when the subject has learned the stimuli at very
large sizes and is first exposed the stimulus at sizes close
to the acuity limits.

Relative legibility, response bias, and
asymmetry of confusion matrices

While studies of letter recognition CM considered the
observed asymmetry as the consequence of response bias
(Townsend, 1971), which, strictly speaking, is the subject’s
tendency to report one letter more than others when the
stimulus is not legible, relative legibility of the stimulus
letters actually plays an important role in determining the
magnitudes of pair-wise asymmetries. In our CMSloan, for
example, “H” was much more legible than “R” (75%
correct vs. 38%). This difference contributed to the large
pair-wise asymmetry in which the probability of an “H”
being reported as an “R” was 0.012 while an “R” being
reported as an “H” was 0.123. Indeed, when we generate
random CMs, we could produce substantial asymmetries
among confusion entries if large variations in the diagonal
line entries were introduced. Therefore, unless the stimuli
are truly equally legible, asymmetry of an empirical CM is
not a pure measure of subjects’ response bias.

Inter-group variations

It is obvious from Figure 4a that GM models fitted
Sloan letters, CC1, CC3, and CC5 better than CC2, CC4,
and CC6. It seemed that this fluctuation did not happen
only to GM modeling. Although the CHOICE model only
concerned with empirical CMs and did not care what
stimulus produced them, it echoed the fluctuation. The
fluctuation was also in some degree mirrored by the
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RANDOM model, which produced higher correlations
with empirical CMs when other models produced lower
correlations. Therefore, the fluctuation seemed to be
related to properties of the empirical CMs. The mean
correct rates of the empirical CMs (59.7%, 54.7%, 57.3%,
56.75, 54.4%, 55.0%, and 58.7% for Sloan and CC1–
CC6) were similar and did not echo the pattern seen in
Figure 4a. It was suggestive that when the RANDOM
model performed best, the other models performed worst,
for example, at CC4. Because the RAMDOM model, after
averaging many random confusion entries, had essentially
uniform confusion entries, it seemed reasonable to suggest
models may fit empirical CMs with more prominent
confusion entries better than those with more uniform
confusion entries. Indeed, model fitting appeared to be
better when confusion entries had larger standard devia-
tions, higher maximum values, and larger ranges. For
example, the standard deviations for the confusions of the
7 groups were 0.0493, 0.0583, 0.0447, 0.0529, 0.0418,
0.0424, and 0.0392. Standard deviations, maximum
values, and ranges correlated highly with GM13 model
performance and were able to account for 78.2%, 76%,
and 74.1% of the inter-group variations for this model.
As the complexity of the letter set increases, the standard

deviation of the confusion entries decreases, suggesting
that confusions became more uniformly distributed. As a
consequence, performance of CSFTM and GM models
declines. This can be seen in the goodness of fit of both the
diagonal line entries and off-diagonal line entries of
empirical CMs in Figures 4a and 5. Although GM fitting
of human confusions obviously fluctuated across stimulus
group, and seemed to have two tiers for goodness of fit,
the change among each tier was small. In comparison, the
CSFTM fitting, with the exception of CC5 in Figure 4a,
decline steadily with stimulus complexity, quantified by
the stroke frequency. The less rapid decline of the GM
models may be explained by the larger numbers of
parameters they used to fit the confusion entries.

Non-orthogonal GMs vs. orthogonal moments

Because the basis functions of GMs are not orthogonal,
GM features have non-zero redundancy, meaning that
GMs may not correspond to independent characteristics of
the image, from a mathematical point of view. Various
orthogonal moment descriptors have been proposed in
computer image processing. Legendre moments (LM)
defined below were orthogonal and real-valued:

Lp;q ¼ ð2pþ 1Þð2qþ 1Þ
ðNj1Þ2

XN
i¼1

XN
j¼1

Pp xið ÞPq yj
� �

f i; jð Þ; ð9Þ

where Pp() and Pq() are Legendre polynomial of the pth
and qth orders, and xi and yj are normalized pixel

coordinates in a unit square (Teague, 1980). Computa-
tional studies have demonstrated that orthogonal
moments, such as Lp,q, are more efficient in reconstructing
details of images. Ghorbel, Derrode, Dhahbi, and
Mezhoud (2005) demonstrated that a 32 � 32 pixel “E”
reconstructed from up to 50th-order GM produced 74
pixels that differed from the original. Only up to
8th-order LMs were needed to reach the same level of
reconstruction accuracy. Human pattern recognition, on
the other hand, typically does not require that much
detail. Do LMs explain human recognition of small
patterns better than GMs? Correlation coefficients
between CMs produced by LM-based feature analysis
models and empirical CMs were shown as the third
number in cells in Table 1. LM models were slightly
better than corresponding GM models in some cases, but
the differences were generally small. For the 10 corre-
sponding GM and LM models, the differences in empiri-
cal–theoretical correlations averaged across the 7 stimulus
groups ranged from +0.019 (GM better than LM) to
j0.083 (LM better than GM). Comparing to the dramat-
ically increased efficiency of LM in reconstruction of
images (8th order vs. 50th order), the improvement of LM
over GM in interpreting human letter confusions near the
acuity limit was mediocre. One possible reason is that the
basis function of an LM of ( p + q)th order is a linear
combination of GM basis functions up to the ( p + q)th
order (Teague, 1980). It can be shown that at the lower
orders that were most relevant to recognition of letters
near the acuity limit, the basis functions of LM are similar
to those of GM, and an LM was either the same order GM
times a constant or a linear sum of two GMs of equal or
lower order. For example, L0,0 = m0,0, L2,0 = (5/4)[(3/2)
m2,0 j (1/2)m0,0], L1,1 = (9/4)m1,1, L3,0 = (7/4)[(5/2)m3,0 j
(1/2)m0,0], and so on. Therefore, the difference between
LM and GM compositions was relatively small when
human recognition of small letters was concerned. It can
be seen in Table 1 that GM1(lu) and LM1(lu) models
produced identical simulation results. In other models,
some LM space dimensions were linear combinations of
two GM dimensions, and adjusting weightings on these
dimensions might not produce the same results as in the
GM space.

Visual acuity and beyond

Visual acuity is a unique condition where the
subject is forced to use global structural properties
of stimuli because of the optical and neural filtering.
That is probably one of the reasons for the success of
the low-order GM models. Recently, Watson and
Ahumada (2008) used a CSF template matching ideal
observer model to fit visual acuity data obtained under
several aberrated conditions. The GM-based feature
analysis model may also be used for this purpose. GM
features can be extracted from aberrated images
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degraded by internal noise and filtered by a neural
transfer function. The feature sets can then be matched
at different letter sizes in a Monte Carlo simulation to
determine threshold letter sizes for different types and
amounts of aberrations.
Whether GM-based feature models are applicable to

other experimental conditions, such as briefly flashed
large and high-contrast letters, or large low contrast
letters, remains to be seen. However, there are a few
situations where an explicit model for utilizing global
properties of visual stimuli is desirable. First, a window
of 4 to 8 letters is necessary in order to reach maximum
reading speed in normal subjects (Legge, Pelli, Rubin,
& Schleske, 1985; Poulton, 1962), and 15 letters to the
right of fixation could contribute to normal reading of
English (Legge, Hooven, Klitz, Stephen Mansfield, &
Tjan, 2002; Legge et al., 1985; Rayner & McConkie,
1976). When reading text whose size is suitable for
foveal reading (,3–4 times foveal acuity size), periph-
eral letters that contribute to reading are likely to be
near the acuity size at their locations, because acuity
drops sharply with retinal eccentricity. Second, patients
who lose central vision due to diseases such as macular
degeneration may be trained to read using intact
peripheral vision. In such cases, a large text size has
to be used, but the room for magnification is quite
limited, because of the limited size of a magnifier
aperture or a large print page. Therefore, reading is
likely to be done near the acuity size of the intact part
of the retina. Finally, there is a general consensus that
visual patterns are recognized in a global-to-local
manner under normal circumstances (Bouma, 1971;
Eriksen & Schultz, 1978; Lupker, 1979; Sanocki, 1991;
Townsend, Hu, & Kadlec, 1988). While there are
debates whether global features can facilitate local
feature detection (Lupker, 1979; Sanocki, 1991), there
is little doubt that global features of a pattern are
extracted and used first. The analog is a “focusing
process” where a visual pattern appears as a “blob-like”
form first, and more details emerge later (Bouma, 1971;
Eriksen & Schultz, 1978; Lupker, 1979; Sanocki, 1991).
A universal mathematical description of global charac-
teristics of visual stimuli can be a powerful tool in
study human performance under these situations.

Appendix A: Models and their
implementations

Implementation of GM models

Because we were interested in recognition of letters
near the acuity limit, we assumed that GM features were
extracted from an internal representation of a stimulus

letter after it was degraded by ocular optics and early
neural processing. In previous modeling efforts for human
letter recognition, a low-pass filtering (Blommaert, 1988;
Loomis, 1990) or a contrast sensitivity function (CSF)
filtering (Chung et al., 2002) of the stimulus letters was
proposed, the former representing the effects of the ocular
optics and the latter representing the effects of early
optical/neural processing. We chose to use CSF filtering
before GM feature extraction. Specifically, we selected a
normal adult CSF function published by Chung et al.
(2002; Figure 2). A 3-parameter model (Mannos &
Sakrison, 1974)

CSFð f Þ ¼ afejðbf Þc ; ðA1Þ

was used to fit the CSF. The best-fitting parameters were
a = 812.3, b = 1.071, c = 0.636. The Chung, Legge and
Tjan (CLT) CSF data are replotted in Figure A1a with the
model fitting. A radial-symmetric 2-D filter in the fre-
quency domain was then created, as shown in Figure A1b.
The original stimuli were black-and-white bitmaps of
Sloan letters and Chinese characters shown in Figure 2.
All stimulus bitmaps were 50 � 50 pixels in size. Because
the bitmaps were used as stimuli 0.1 log unit above the
acuity sizes shown in Figure 2, the resolutions ranged
700 pixels/deg for the Sloan letters to 398 pixels/deg for
CC6. The stimulus bitmaps were pasted on a large black
background before being filtered. For each stimulus
letter, the Fourier transform of its bitmap was multiplied
with the CLT CSF filter, and then the inverse Fourier
transform was taken. The result was a highly blurred
version of the letter, shown in Figure A1c. The filtered
stimulus was cropped to 1.2� of original stimulus size to
save time in simulation. Cropped sizes of up to 3� of
original stimulus size were tested, and no significant
differences in simulation results were noticed. Procedures
defined in Equations 2–5 were used to extract a set of n
GMs, and a theoretic CM {ci,j} with n + 1 free parameters
was generated according to Equations 6–8. An optimiza-
tion routine was used to look for the best fitting
parameters so that the sum of squared differences
between a theoretic CM and the corresponding empirical
CM was minimal. One of the debatable issues in fitting
CMs is how to treat the diagonal line entries. In a
typical letter recognition study, the average correct rate
is set at 50%–75%, which means that the diagonal line
entries are much larger than off-diagonal line entries. If
the whole CM is fitted, the diagonal line entries are
likely to dominate the fitting and may result in an over-
optimistic goodness of fit, in which the fitting of the
confusions can be quite poor (LeBlanc & Muise, 1985).
In our study, we optimized both the whole CM and
confusions entries.
The letter sizes used in the study were 0.1 log unit

above acuity sizes shown in Figure 2.
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CHOICE Model CMs and RANDOM
Confusion CMs

To set up benchmarks for goodness of CM fitting and to
gain insights into issues such as response bias, we also
analyzed our empirical CMs with the choice model. Luce
(1963a) first formulated a general model for choice experi-
ments, which stipulated that the probability of the subject
making a response of r given a stimulus s was determined
by two scales, a similarity between r and s, and response
bias. Townsend (1971) applied the choice model to
recognition of uppercase English letters. The probability
of the ith letter being reported as the jth letter was given by

cij ¼ )ij"j=
X26
k¼1

)ik"k; ðA2Þ

where {)ij} was a symmetric similarity matrix, and {"k}
was the bias vector. The purpose of Townsend’s choice
model was to derive the unknown {)ij} and {"k} from a

known empirical CM. Therefore, for an experiment
involving k letters, the model estimated [k(k + 1)/2] j 1
parameters, k(k j 1)/2 pair-wise similarities, and (k j 1)
independent relative biases. For an experiment involving
recognizing 10 letters, the number of parameters was 54.
Because of the enormous number of parameters used, the
choice model CM defined in Equation A2 usually
provides an excellent fit of the empirical CM and thus
can serve as a practical upper limit for goodness of fit.
Explicit formulas provided by Townsend (1971) were
used to calculate choice CM, similarity matrix, and
response bias vector for each of our 7 empirical CMs.
A random CM did not contain a consistent confusion

pattern. In each random CM, the diagonal line entries
were the same as an empirical CM, and the off-diagonal
line entries were randomly generated, satisfying only the
restriction that each column sum was equal to 1.0. There
was no free parameter in such a CM. An ensemble of such
CMs represented hypothetic observer who made the same
correct responses as human subjects but did not have a
consistent confusion pattern. Each of our empirical CM

Figure A1. (a) An empirical CSF function from Chung et al. (2002). Data are fitted with a three parameter function. (b) CSF filter used in
filtering the stimulus. (c) Filtered stimuli used in the model simulations.
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was correlated with 500 such random CMs. The average
of the correlation coefficients served as a lower boundary
for fitting empirical CMs. Because each random CM still
had to satisfy the unit column sum requirement, the
average correlations with empirical CMs had positive
values (black diamonds in Figure 4a).

CSF Template-Matching Model (CSFTM)

To compare GM models with alternative models for
letter recognition, we derived a CSF template-matching
(CSFTM) model from a CSF ideal-observer model
(Chung et al., 2002) and applied it to our 7 groups of
stimuli. The CSF ideal-observer model was essentially a
template-matching model that minimized the sum of
squared differences between a stimulus and a template
(Tjan et al., 1995). Specifically, the model calculated all
sums of squared differences between a CSF filtered
stimulus letter and all similarly filtered template letters,
and selected as the response the template that had the
smallest sum of squared differences from the stimulus. For
a CSF filtered stimulus letter S and a filtered template
letter T, the sum of squared difference is

Ds;t ¼
X
x

X
y

ðSðx; yÞj Tðx; yÞÞ2: ðA3Þ

For a k-letter recognition experiment, {Ds,t} is a k-by-k
matrix with zeros on the diagonal, similar to {di,j} in
Equation 6. We used procedures similar to Equations 7
and 8 to create a CSF template-matching similarity matrix
and a confusion matrix. The CSFTM model has only one
free parameter, C in Equation 7.
The implementation of a CSFTM model was similar to

that for GM models. The same CSF-filtered letters were
used as inputs, and the same optimization procedures were
used. Because template matching was sensitive to relative
positions between the stimulus and template, we displaced
the stimulus relative to the template in 1-pixel step for 5
pixels in both horizontal and vertical directions in calculat-
ing Ds,t. The best result among the 25 relative positions
was taken as the Ds,t. Seven and 9-pixel relative shifts
were tested and no significant differences in simulation
results were noticed. Loomis (1990) used similar method
to study CMs of 26 English letters. Instead of a CSF,
Loomis used a low-pass filter to simulate the effect of
ocular optics.
In our modeling effort, we computed a theoretical CM

for each set of free parameters, calculated the correlation
between the theoretical CM and the corresponding
empirical CM, and looked for a set of parameters that
maximized theoretical/empirical CM correlation. An
alternative is a Monte Carlo simulation of a psychophys-
ical experiment, where an idea observer equipped with an
optimal decision making strategy tries to recognize

luminance noise degraded characters (Pelli et al., 2006;
Tjan & Legge, 1998; Watson & Ahumada, 2008). The
outcome of this simulation is also a theoretical CM, which
can then be used to compare with an empirical CM. Tjan
et al. (1995) gave mathematical proof that the calculation
of ideal observer recognition performance of Gaussian
noise degraded objects is equivalent to the calculation of
template matching. It would be interesting to investigate
how the ideal observer decision making would affect GM
model performance.

Reconstruction of a 2-D image with
geometric moments

Because a finite spatial function f(x, y) can be
completely specified by geometric moments {Mp,q}
( p, q = 0, 1, 2,I) (Hu, 1962), one should also be able to
reconstruct f(x, y) from {Mp,q}. However, reconstruction
with GM is not as straightforward as an inverse Fourier
transform (Ghorbel et al., 2005), because the basis
functions of GM are not orthogonal. Teague (1980)
proposed a moment matching method to reconstruct any
function f(x, y) from GMs up to a given order Nmax.
The idea is to obtain a continuous function g(x, y) = g00 +
g10x + g01y + g20x

2 + g11xy + g02y
2 + I, whose GM

exactly match those of f(x, y) up to the order Nmax. The
constant coefficients gpq of g(x, y) are determined by

Zþ1

j1

dx

Zþ1

j1

dyðg00 þ g10xþ g01yþ g20x
2 þ g11xy

þ g02y
2 þ >Þxpyq K Mp;q: ðA4Þ

Equation A4 results in a set of linear equations. Solving
these equations, which is equivalent to calculating an
inversed matrix of known Mp,q, uniquely determines all
the coefficients of g(x, y). In theory, exact reconstruction of
an Nx � Ny image can be made by using moments Mp,q,
where p = 1, 2,I, Nx, and q = 1, 2,I, Ny. We used our
implementation of this method in Matlab to create the
reconstruction shown in Figure 1b. One inconvenience of
moment matching reconstruction is that the coefficients gjk
depend on the order of the moments used in reconstruction.
For example, g22 for the same image has different values
for Nmax = 4 and Nmax = 5. This is because each coefficient
gjk is a linear combination of Mp,q up to the Nmax order.
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